National Science Foundation:
Revolutionizing Engineering Departments
(NSF RED)
Computer Science Professionals Hatchery (CSP Hatchery)
Boise State University
Computer Science
2016
Funded in
National Science Foundation Project Page
University Project Page
Link coming soon.
Abstract
The Computer Science Professionals Hatchery seeks to transform undergraduate education by replicating the best elements of a software company environment, layering in moral, ethical, and social threads with entrepreneurship and professional skills, to produce graduates who are not only technically adept and effective team members, but also empowered as agents of positive cultural change in their workplaces. Two critical curriculum features of the Computer Science Professionals Hatchery are: (1) VERTICAL INTEGRATION. Instead of being siloed, students at all grade levels will work with and learn from each other on industry sponsored projects. By so doing, the Hatchery will unite faculty and industry professionals to mentor student teams through exciting and relevant projects, fostering a strong sense of community amongst students, faculty, and industry. (2) Short, narrowly focused HATCHERY UNITS will complement regular course work by presenting aspects of specific, foundational concepts or skills--such as communication, software engineering collaboration tools or cybersecurity--that cut across the curriculum, using a unique approach that overlays nimble and lean Hatchery Units with regular courses. The Hatchery Units will also serve as focal points for senior-level capstone teams to work with, mentor, and direct teams at other grade levels. The Hatchery thus combines the flexible, skills-based approach found in the best of the code schools with the depth and rigor of knowledge best acquired in an academic setting, in a multi-team learning environment that replicates the professional company environment.
The proposed Hatchery structure will enable exploring methods for identifying and addressing moral and ethical issues supporting professional work in computer science. It will research and develop approaches for incorporating analytic philosophical principles of social justice into undergraduate computer science curricula in order to bind moral and ethical responsibilities to social justice, along with technical expertise, revolutionizing undergraduate computer science education and producing graduates who are better prepared for industry as members of agile and diverse development teams. In addition, this project will determine effective practices for affecting positive changes in department teaching culture, and serve as a model for other Boise State departments and for departments at other institutions. The proposed project is capitalizing on three factors that can apply in varying levels to other departments as well. (1) DEEP PIPELINE. The Boise State CS department has developed relationships throughout the learning pipeline from K-12 to industry. Therefore, combining ongoing K-12 projects with work described in this proposal will enable shaping a software development culture from an early age and provide a model of effective transformation of a local software ecosystem. (2) CULTURAL TRANSITION. In response to industry demand for talent and unprecedented enrollment growth, over the past four years the CS department has hired 21 full-time faculty and lecturers; this makes for an ideal environment to develop methods for establishing desired new cultural norms. (3) PHYSICAL TRANSITION. The CS department is moving to a new building co-located with a large number of software companies, which presents a unique opportunity to design the physical characteristics of the learning environment to maximize industry and student interaction, promote diversity, and encourage teamwork.